domingo, 19 de septiembre de 2010
lunes, 13 de septiembre de 2010
LOS ALQUENOS
Nomenclatura:
Al prefijo que indica número de átomo de carbono se le agrega la terminación eno. Muchos de ellos son más conocidos por sus nombres comunes, como el eteno (etileno). Presentan isomería geométrica cis y trans, según la posición de los grupos respecto al doble enlace.
Propiedades físicas
Puntos de fusión y ebullición: aumentan con el peso molar de manera similar a los alcanos. Densidad: son todos menos densos que el agua. La densidad se halla alrededor de 0,7 g/ml. Solubilidad: son solubles en solventes no polares o poco polares como el benceno, éter o cloroformo- Los isómeros geométricos tienen diferentes puntos de fusión, ebullición, densidad , solubilidad, etc, lo que se utiliza para identificarlos.
Reactividad:
La presencia del doble enlace los hace mucho más reactivos que los alcanos. Tienen reacciones de adición al doble enlace., siendo las más frecuentes la adición de hidrógeno o halógenos. Es muy importante a nivel industrial la polimerización de los alquenos.
USOS
La elevada reactividad del doble enlace los hace importantes intermediarios de la síntesis de una gran variedad de compuestos orgánicos. Probablemente el alqueno de mayor uso industrial sea el ETILENO (eteno) que se utiliza entre otras cosas para obtener el plástico POLIETILENO, de gran uso en cañerías, envases, bolsas y aislantes eléctricos. También se utiliza para obtener alcohol etílico, etilen-glicol, cloruro de vinilo y estireno.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
LOS AROMATICOS
Un hidrocarburo aromático es un polímero cíclico conjugado que cumple la Regla de Hückel, es decir, que tienen un total de 4n+2 electrones pi en el anillo. Para que se dé la aromaticidad, deben cumplirse ciertas premisas, por ejemplo que los dobles enlaces resonantes de la molécula estén conjugados y que se den al menos dos formas resonantes equivalentes. La estabilidad excepcional de estos compuestos y la explicación de la regla de Hückel han sido explicados cuánticamente, mediante el modelo de "partícula en un anillo" Originalmente el término estaba restringido a un producto del alquitrán mineral, el benceno, y a sus derivados, pero en la actualidad incluye casi la mitad de todos los compuestos orgánicos; el resto son los llamados compuestos alifáticos. El máximo exponente de la familia de los hidrocarburos aromáticos es el benceno (C6H6), pero existen otros ejemplos, como la familia de anulenos, hidrocarburos monocíclicos totalmente conjugados de fórmula general (CH)n.
APLICACIONES:
Entre los hidrocarburos aromáticos más importantes se encuentran todas las hormonas y vitaminas, excepto la vitamina C; prácticamente todos los condimentos, perfumes y tintes orgánicos, tanto sintéticos como naturales; los alcaloides que no son alicíclicos (ciertas bases alifáticas como la putrescina a veces se clasifican incorrectamente como alcaloides), y sustancias como el trinitrotolueno (TNT) y los gases lacrimógenos. Por otra parte los hidrocarburos aromáticos suelen ser nocivos para la salud, como los llamados BTEX, benceno, tolueno, etilbenceno y xileno por estar implicados en numerosos tipos de cáncer o el alfa-benzopireno que se encuentra en el humo del tabaco, extremadamente carcinógenico igualmente, ya que puede producir cáncer de pulmón
TOXICOLOGIA:
Los Hidrocarburos Aromáticos pueden ser cancerígenos. Se clasifican como 2A o 2B. El efecto principal de la exposición de larga duración (365 días o más) al benceno es en la sangre. El benceno produce efectos nocivos en la médula de los huesos y puede causar una disminución en el número de glóbulos rojos, lo que conduce a anemia. El benceno también puede producir hemorragias y daño al sistema inmunitario, aumentando así las posibilidades de contraer infecciones. Algunas mujeres que respiraron altos niveles de benceno por varios meses tuvieron menstruaciones irregulares y el tamaño de sus ovarios disminuyó. No se sabe si la exposición al benceno afecta al feto durante el embarazo o a la fertilidad en los hombres. Estudios en animales que respiraron benceno durante la preñez han descrito bajo peso de nacimiento, retardo en la formación de hueso y daño en la médula de los huesos. Se ha determinado que el benceno es un reconocido carcinógeno en seres humanos. La exposición de larga duración a altos niveles de benceno en el aire puede producir leucemia. En el organismo, el benceno es convertido en productos llamados metabolitos. Ciertos metabolitos pueden medirse en la orina. Sin embargo, este examen debe hacerse con prontitud después de la exposición y su resultado no indica con confianza a cuánto benceno estuvo expuesto, ya que los metabolitos en la orina pueden originarse de otras fuentes. El benceno ha producido intoxicaciones agudas y crónicas en su obtención y en sus múltiples aplicaciones en la industria química. A causa de su elevada toxicidad, en cuantos casos es posible se sustituye por bencina y otros solventes menos tóxicos. El benceno actúa produciendo irritación local bastante intensa, actúa como narcótico y tóxico nervioso. Su acción crónica se ejerce especialmente como veneno hemático. Ingerido por error ha producido gastritis. Se ha alcanzado la muerte por ingestión de 30g del líquido. Cuando se produce la inhalación de vapores concentrados, puede producir rápidamente la narcosis mortal, después de un estado previo de euforia, embriaguez y convulsiones. La inhalación de concentraciones más débiles origina torpeza cerebral, sensación de vértigo, cefalea, náuseas, excitación con humor alegre, embriaguez que puede transfornmarse en sueño, sacudidas musculares, relajación muscular, pérdida del conocimiento y rigidez pupilar. En caso de intoxicación aguda, se produce enrojecimiento de la cara y las mucosas
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.
LOS ALCANOS
A pesar de ello son muy importantes porque:
-Su estudio nos permitirá entender el comportamiento del esqueleto de los compuestos orgánicos (conformaciones, formación de radicales)
-Constituyen una de las fuentes de energía más importantes para la sociedad actual (petróleo y sus derivados).
Propiedades Físicas:
Punto de ebullición. Los puntos de ebullición de los alcanos no ramificados aumentan al aumentar el número de átomos de Carbono. Para los isómeros, el que tenga la cadena más ramificada, tendrá un punto de ebullición menor.
Solubilidad. Los alcanos son casi totalmente insolubles en agua debido a su baja polaridad y a su incapacidad para formar enlaces con el hidrógeno. Los alcanos líquidos son miscibles entre sí y general mente se disuelven en disolventes de baja polaridad. Los buenos disolventes para los al canos son el benceno, tetra cloruro de carbono, cloroformo y otros al canos.
Propiedades Químicas:
Los alcanos arden en el aire con llama no muy luminosa y produciendo agua y anhídrido carbónico. La energía térmica desprendida en la combustión de un alcano puede calcularse por: Q = n * 158.7 + 54.8 calorías
Donde n = número de átomos de carbono del alcano
NOMENCLATURA
La nomenclatura IUPAC (forma sistemática de denominar a los compuestos) para los alcanos es el punto de partida para todo el sistema de nomenclatura. Se basa en identificar a las cadenas hidrocarbonadas. Las cadenas de hidrocarburos saturados lineales son nombradas sistemáticamente con un prefijo numérico griego que denota el número de átomos de carbono, y el sufijo "-ano".
ABUNDANCIA:
El metano y el etano constituyen una parte importante en la composición de la atmósfera de Júpiter
Los alcanos son una parte importante de la atmósfera de los planetas gaseosos exteriores, como Júpiter (0,1% metano, 0,0002% etano), Saturno (0,2% metano, 0,0005% etano), Urano (1,99% metano, 0,00025% etano) y Neptuno
En la atmósfera hay trazas de gas metano (0,0001%), producido principalmente por organismos como Archaea, que se encuentra, por ejemplo, en el estómago de las vacas.
Su solubilidad en solventes no polares es relativamente buena, una propiedad que se denomina lipofilicidad. Por ejemplo, los diferentes alcanos son miscibles entre sí en todas las demas proporciones.
Las aplicaciones de los alcanos pueden ser determinadas bastante bien de acuerdo al número de átomos de carbono. Los cuatro primeros alcanos son usados principalmente para propósitos de calefacción y cocina, y en algunos países para generación de electricidad. El metano y el etano son los principales componentes del gas natural; pueden ser almacenados como gases bajo presión. Sin embargo, es más fácil transportarlos como líquidos: esto requiere tanto la compresión como el enfriamiento del gas.
El propano y el butano pueden ser líquidos a presiones moderadamente bajas y son conocidos como gases licuados del petróleo (GLP). Por ejemplo, el propano se usa en el quemador de gas propano, el butano en los encendedores descartables de cigarrillos. Estos dos alcanos son usados también como propelentes en pulverizadores.
Desde el pentano hasta el octano, los alcanos son líquidos razonablemente volátiles. Se usan como combustibles en motores de combustión interna, puesto que pueden vaporizarse rápidamente al entrar en la cámara de combustión, sin formar gotas, que romperían la uniformidad de la combustión. Se prefieren los alcanos de cadena ramificada, puesto que son menos susceptibles a la ignición prematura, que causa el cascabeleo en los motores, que sus análogos de cadena lineal. Esta propensión a la ignición prematura es medida por el índice de octano del combustible, donde el 2,2,4-trimetilpentano (isooctano) tiene un valor arbitrario de 100, y heptano tiene un valor de cero. Además de su uso como combustibles, los alcanos medios son buenos Solventes para las sustancias no polares.
Los alcanos desde el nonano hasta, dígase, el hexadecano (un alcano con dieciséis átomos de carbono) son líquidos de alta viscosidad, cada vez menos aptos para su uso en gasolinas. Por el contrario, forman la mayor parte del diésel y combustible de aviones. Los combustibles diésel están caracterizados por su índice de cetano (el cetano es un nombre antiguo para el hexadecano). Sin embargo, el alto punto de fusión de estos alcanos puede causar problemas a bajas temperaturas y en regiones polares, donde el combustible se vuelve demasiado espeso para fluir adecuadamente.
sábado, 24 de abril de 2010
GRUPOS FUNCIONALES ORGANICOS
Funcionalización [editar]La funcionalización es la adición de grupos funcionales en la superficie de un material por métodos de síntesis química. El grupo funcional agregado puede ser sujeto a métodos de síntesis ordinarios, para agregar virtualmente cualquier tipo de compuesto orgánico a la superficie.
FUNCIONALIZACION
La funcionalización es utilizada para modificaciones de la superficie de materiales industriales, con el fin de lograr propiedades de superficie deseadas, como recubrimientos impermeables al agua para parabrisas de automóviles. Además, los grupos funcionales son usados para unir covalentemente moléculas funcionales a la superficie de dispositivos químicos y bioquímicos, como microarreglos y sistemas microelectromecánicos.
Los catalizadores pueden ser unidos a un material que ha sido funcionalizado. Por ejemplo, el sílice es funcionalizado con silicona de alquilo, donde el alquilo contiene un grupo funcional amino. Un ligando tal como un fragmento EDTA es sintetizado en la amina, y un catión metálico es complexado en el fragmento de EDTA. El EDTA no está absorbido en la superficie, pero está conectado a ella por un enlace químico permanente.
Los grupos funcionales también son usados para unir covalentemente moléculas como tintes fluorescentes, nanopartículas, proteínas, ADN, y otros compustos de interés para una variedad de aplicaciones.
TINTES FLUORESCENTES
NANOPARTICULAS
PROTEINAS
ADN
Los compuestos orgánicos también pueden contener otros elementos, también grupos de átomos, llamados grupos funcionales. Un ejemplo es el grupo hidroxilo, que forma los alcoholes: un átomo de oxígeno enlazado a uno de hidrógeno (-OH), al que le queda una valencia libre
ALCOHOLES:
En química se denomina alcohol "el espíritu", "toda sustancia pulverizada", "líquido destilado") a aquellos hidrocarburos saturados, o alcanos que contienen un grupo hidroxilo (-OH) en sustitución de un átomo de hidrógeno enlazado de forma covalente.
Los alcoholes pueden ser primarios, secundarios o terciarios, en función del número de átomos de hidrógeno sustituidos en el átomo de carbono al que se encuentran enlazado el grupo hidroxilo.
A nivel del lenguaje popular se utiliza para indicar comúnmente una bebida alcohólica, que presenta etanol, con formula química CH3CH2OH.
Fuentes
Muchos alcoholes pueden ser creados por fermentación de frutas o granos con levadura, pero solamente el etanol es producido comercialmente de esta manera, principalmente como combustible y como bebida. Otros alcoholes son generalmente producidos como derivados sintéticos del gas natural o del petróleo.
ALCOHOL ETILICO
____________________________________________________________________________________
ALCANOS
Los alcanos son hidrocarburos, es decir que tienen sólo átomos de carbono e hidrógeno. La fórmula general para alcanos alifáticos (de cadena lineal) es CnH2n+2, y para cicloalcanos es CnH2n. También reciben el nombre de hidrocarburos saturados.
Los alcanos al estar compuestos solo por átomos carbono e hidrógeno, no presentan funcionalización alguna, es decir, sin la presencia de grupos funcionales como el carbonilo (-CO), carboxilo (-COOH), amida (-CON=), etc. La relación C/H es de CnH2n+2 siendo n el número de átomos de carbono de la molécula, (como se verá después esto es válido para alcanos de cadena lineal y cadena ramificada pero no para alcanos cíclicos). Esto hace que su reactividad sea muy reducida en comparación con otros compuestos orgánicos, y es la causa de su nombre no sistemático: parafinas (del latín, poca afinidad). Todos los enlaces dentro de las moléculas de alcano son de tipo simple o sigma, es decir, covalentes por compartición de un par de electrones en un orbital s, por lo cual la estructura de un alcano sería de la forma:
donde cada línea representa un enlace covalente. El alcano más sencillo es el metano con un solo átomo de carbono. Otros alcanos conocidos son el etano, propano y el butano con dos, tres y cuatro átomos de carbono respectivamente. A partir de cinco carbonos, los nombres se derivan de numerales griegos: pentano, hexano, heptano...
Artículo principal: Cicloalcano
Los alcanos cíclicos o cicloalcanos son, como su nombre indica hidrocarburos alcanos de cadena cíclica. En ellos la relación C/H es CnH2n). Sus características físicas son similares a las de los alcanos no cíclicos, pero sus características químicas difieren sensiblemente, especialmente aquellos de cadena mas corta, de estos siendo mas similares a las de los alquinos
ALQUINO
Los alquinos son hidrocarburos alifáticos con al menos un triple enlace entre dos átomos de carbono. Se trata de compuestos metaestables debido a la alta energía del triple enlace carbono-carbono. Su fórmula general es CnH2n-2
Nomenclatura
Para dar nombre a los hidrocarburos del tipo alcano, alqueno y alquino se siguen ciertas reglas.
Se toma como cadena principal, la más larga en forma lineal o en secuencia vertical u horizontal.
Si todos los carbonos están unidos entre sí por ligado limpio o simple, son saturados del tipo alcanos y se les nombra con el número ordinal griego, con terminación ano, excepto los 4 primeros que tienen nombre especial(met- un carbono, et. dos, prop- tres y but- cuatro).
Cuando los hidrocarburos saturados, tipo alcanos se les quita un hidrógeno, en cualquiera de sus extremos, resulta un radical hidrocarburo, quedando una valencia insatisfecha del carbono, y por ahí se une a otro compuesto, su nombre lo toma del carbono 8 saturado con terminación il o ilo.
Cuando en las cadenas de carbono existe al menos uno de éstos que esté unido a otro carbono por triple enlace, éste es un Alquino y su terminación es en "ino". Ej: Propino, Butino, Pentino.
ALQUENO
Los alquenos son hidrocarburos derivados del petróleo, que tienen doble enlace carbono-carbono en su molécula, y por eso son denominados insaturados. La fórmula general es CnH2n. Se puede decir que un alqueno no es más que un alcano que ha perdido dos átomos de hidrógeno produciendo como resultado un enlace doble entre dos carbonos.
Al igual que ocurre con otros compuestos orgánicos, algunos alquenos se conocen todavía por sus nombres no sistemáticos, en cuyo caso se sustituye la terminación -eno sistemática por -ileno, como es el caso del eteno que en ocasiones se llama etileno, o propeno por propileno. Los alquenos cíclicos reciben el nombre de cicloalquenos. Ver también la Producción de Olefinas a nivel industrial
AROMATICOS:
Un hidrocarburo aromático es un polímero cíclico conjugado que cumple la Regla de Hückel, es decir, que tienen un total de 4n+2 electrones pi en el anillo. Para que se dé la aromaticidad, deben cumplirse ciertas premisas, por ejemplo que los dobles enlaces resonantes de la molécula estén conjugados y que se den al menos dos formas resonantes equivalentes. La estabilidad excepcional de estos compuestos y la explicación de la regla de Hückel han sido explicados cuánticamente, mediante el modelo de "partícula en un anillo".
Una característica de los hidrocarburos aromáticos como el benceno, anteriormente mencionada, es la coplanaridad del anillo o la también llamada resonancia, debida a la estructura electrónica de la molécula. Al dibujar el anillo del benceno se le ponen tres enlaces dobles y tres enlaces simples. Dentro del anillo no existen en realidad dobles enlaces conjugados resonantes, sino que la molécula es una mezcla simultánea de todas las estructuras, que contribuyen por igual a la estructura electrónica. En el benceno, por ejemplo, la distancia interatómica C-C está entre la de un enlace σ (sigma) simple y la de uno π(pi) (doble).
Originalmente el término estaba restringido a un producto del alquitrán mineral, el benceno, y a sus derivados, pero en la actualidad incluye casi la mitad de todos los compuestos orgánicos; el resto son los llamados compuestos alifáticos.
El máximo exponente de la familia de los hidrocarburos aromáticos es el benceno (C6H6), pero existen otros ejemplos, como la familia de anulenos, hidrocarburos monocíclicos totalmente conjugados de fórmula general (CH)n
ALDEHIDOS:
Los aldehídos son compuestos orgánicos caracterizados por poseer el grupo funcional -CHO. Se denominan como los alcoholes correspondientes, cambiando la terminación -ol por -al :
Se pueden obtener a partir de la oxidación suave de los alcoholes primarios. Esto se puede llevar a cabo calentando el alcohol en una disolución ácida de dicromato de potasio (también hay otros métodos en los que se emplea Cr en el estado de oxidación +6). El dicromato se reduce a Cr3+ (de color verde). También mediante la oxidación de Swern, en la que se emplea sulfóxido de dimetilo, (Me)2SO, dicloruro de oxalilo, (CO)2Cl2, y una base. Esquemáticamente el proceso de oxidación es el siguiente:
CETONA
Una cetona es un compuesto orgánico caracterizado por poseer un grupo funcional carbonilo. Cuando el grupo funcional carbonilo es el de mayor relevancia en dicho compuesto orgánico, las cetonas se nombran agregando el sufijo -ona al hidrocarburo del cual provienen (hexano, hexanona; heptano, heptanona; etc). También se puede nombrar posponiendo cetona a los radicales a los cuales está unido (por ejemplo: metilfenil cetona). Cuando el grupo carbonilo no es el grupo prioritario, se utiliza el prefijo oxo- (ejemplo: 2-oxopropanal).
El grupo funcional carbonilo consiste en un átomo de carbono unido con un doble enlace covalente a un átomo de oxígeno, y además unido a otros dos átomos de carbono.
El tener dos átomos de carbono unidos al grupo carbonilo, es lo que lo diferencia de los ácidos carboxílicos, aldehídos, ésteres. El doble enlace con el oxígeno, es lo que lo diferencia de los alcoholes y éteres. Las cetonas suelen ser menos reactivas que los aldehídos dado que los grupos alquílicos actúan como dadores de electrones por efecto inductivo
ETER:
En química orgánica y bioquímica, un éter es un grupo funcional del tipo R-O-R', en donde R y R' son grupos que contienen átomos de carbono, estando el átomo de oxígeno unido y se emplean pasos intermedios:
ROH + HOR' → ROR' + H2O
Normalmente se emplea el alcóxido, RO-, del alcohol ROH, obtenido al hacer reaccionar al alcohol con una base fuerte. El alcóxido puede reaccionar con algún compuesto R'X, en donde X es un buen grupo saliente, como por ejemplo yoduro o bromuro. R'X también se puede obtener a partir de un alcohol R'OH.
RO- + R'X → ROR' + X-
Al igual que los ésteres,no forman puentes de hidrógeno. Presentan una alta hidrofobicidad, y no tienden a ser hidrolizados. Los éteres suelen ser utilizados como disolventes orgánicos.
Suelen ser bastante estables, no reaccionan fácilmente, y es difícil que se rompa el enlace carbono-oxígeno. Normalmente se emplea, para romperlo, un ácido fuerte como el ácido yodhídrico, calentando, obteniéndose dos halogenuros, o un alcohol y un halogenuro. Una excepción son los oxiranos (o epóxidos), en donde el éter forma parte de un ciclo de tres átomos, muy tensionado, por lo que reacciona fácilmente de distintas formas.
El enlace entre el átomo de oxígeno y los dos carbonos se forma a partir de los correspondientes orbitales híbridos sp³. En el átomo de oxígeno quedan dos pares de electrones no enlazantes.
Los dos pares de electrones no enlazantes del oxígeno pueden interaccionar con otros átomos, actuando de esta forma los éteres como ligandos, formando complejos. Un ejemplo importante es el de los éteres corona, que pueden interaccionar selectivamente con cationes de elementos alcalinos o, en menor medida, alcalinotérreos.
ACIDO CARBOXILICO:
Los ácidos carboxílicos constituyen un grupo de compuestos que se caracterizan porque poseen un grupo funcional llamado grupo carboxilo o grupo carboxi (–COOH); se produce cuando coinciden sobre el mismo carbono un grupo hidroxilo (-OH) y carbonilo (C=O). Se puede representar como COOH ó CO2H.
Los derivados de los ácidos carboxílicos tienen como formula general R-COOH. Tiene propiedades ácidas; los dos átomos de oxígeno son electronegativos y tienden a atraer a los electrones del átomo de hidrógeno del grupo hidroxilo con lo que se debilita el enlace, produciéndose en ciertas condiciones, una ruptura heterolítica cediendo el correspondiente protón o hidrón, H+, y quedando el resto de la molécula con carga -1 debido al electrón que ha perdido el átomo de hidrógeno, por lo que la molécula queda como R-COO-.
Además, en este anión, la carga negativa se distribuye (se deslocaliza) simétricamente entre los dos átomos de oxígeno, de forma que los enlaces carbono-oxígeno adquieren un carácter de enlace parcialmente doble
AMINAS:
Las aminas son compuestos químicos orgánicos que se consideran como derivados del amoníaco y resultan de la sustitución de los hidrógenos de la molécula por los radicales alquilo. Según se sustituyan uno, dos o tres hidrógenos, las aminas serán primarias, secundarias o terciarias, respectivamente
AMINA PRIMARIA
AMINA SECUNDARIA
AMINA TERCIARIA
NITRILOS:
El nitrilo es un compuesto químico en cuya molécula existe el grupo funcional cianuro o ciano, -C≡N. Los nitrilos se pueden considerar derivados orgánicos del cianuro de hidrógeno, en los que el hidrógeno ha sido sustituido por un radical alquilo. Se nombran añadiendo el sufijo nitrilo al nombre de la cadena principal; por ejemplo, etanonitrilo, CH3CN.
El grupo ciano está polarizado de tal forma que el átomo de carbono es el extremo positivo del dipolo y el nitrógeno el negativo. Esta polaridad hace que los nitrilos estén muy asociados en estado líquido. Así, sus puntos de ebullición son algo superiores a los de los alcoholes de masa molecular comparable. Exceptuando los primeros términos de la serie, son sustancias insolubles en agua. La mayoría de los nitrilos tienen un olor que recuerda al del cianuro de hidrógeno y son moderadamente tóxicos.
Una de las reacciones más utilizadas de los nitrilos es su hidrólisis a ácidos carboxílicos. Esta reacción tiene lugar en presencia de un ácido o de una base fuertes, y en ambos casos el primer producto es una amida, que no puede ser aislada a menos que su velocidad de hidrólisis sea inferior a la del nitrilo inicial.
Los nitrilos se obtienen por acción del cianuro de sodio o de potasio sobre los haluros de alquilo, y también calentando las amidas en presencia de un deshidratante.
AMIDAS:
Una amida es un compuesto orgánico cuyo grupo funcional es del tipo RCONR'R'', siendo CO un carbonilo, N un átomo de nitrógeno, y R, R' y R'' radicales orgánicos o átomos de hidrógeno:
Se puede considerar como un derivado de un ácido carboxílico por sustitución del grupo —OH del ácido por un grupo —NH2, —NHR o —NRR'
domingo, 18 de abril de 2010
Formas Alotropicas del Carbono
Se conocen cinco formas alotrópicas del carbono, además del amorfo: grafito,diamantes, fulerenos,nanotubos, y carbinos
Una de las formas en que se encuentra el carbono es el grafito, que es el material del cual está hecha la parte interior de los lápices de madera. El grafito tiene exactamente los mismos átomos del diamante, pero por estar dispuestos en diferente forma, su textura fuerza y color son diferentes. Los diamantes naturales se forman en lugares donde el carbono ha sido sometido a grandes presiones y altas temperaturas. Los diamantes se pueden crear artificialmente, sometiendo el grafito a temperaturas y presiones muy altas. Su precio es menor al de los diamantes naturales, pero si se han elaborado adecuadamente tienen la misma fuerza, color y transparencia.
.El 22 de marzo de 2004 se anunció el descubrimiento de una sexta forma alotrópica: las nanoespumas
La forma amorfa es esencialmente grafito, pero no llega a adoptar una estructura cristalina macroscópica. Esta es la forma presente en la mayoría de los carbones y en el hollín
estado alotropico del carbono
mapa conceptual
http://www.youtube.com/watch?v=wmC8Dg4n-ZA " sigue el link para ver el video correspondiente a formas alotropicas del carbono"
____________________________________________________________________